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Abstract: 4 general emission equation, which contains as
its asymptotic limits both the Richardson (thermal
emission) and the Fowler Nordheim (field emission)
equations, is developed.  The general thermal-field
equation performs over a range of temperatures, fields, and
work function values where the asymptotes are degraded.
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Introduction

Formulae for the evaluation electron emission current
density are generally predicated on the high-field low-
temperature (Fowler Nordheim Equation) or low-field
high-temperature (Richardson-Laue-Dushmam Equation)
limits of the general emission integral given by

J(Pr.Br) =5+ [DE (EE,
0

f(Ex)=—ﬂ”—'——ln[1+exp(ﬂr(u—Ex)] [1]

7 Th2
D(E,)~ C/[1+exp(Bp(E, - Ey )]

where D(E) is the linearized-08 form of a hyperbolic-tangent
approximation to the transmission probability, f{E) is the
supply function, fr and fr = 1/kgT are slope factors, F
[eV/nm] is the product of the field and the electron charge
e, u [eV] is the chemical potential (Fermi level), JJA/cm?]
is current density and other terms have their usual
meanings. E, is the energy related to the component of
electron momentum directed at the surface — henceforth,
the subscript shall be suppressed. E, is reference point to
be determined, and the coefficient C is of order unity (and
will be taken henceforth as unity). Eq. [1] can be recast as

J(Br:Br)= ARLDTZN[%IT;aﬁF (E, - ﬂ),ﬁFEo}

N(n,s,u)= nfwln[1+e"(z"s)](l +ez)_1 dz

[2]

where Ap;p = 120.17 A/em’K>. The ratio n = By / B is of

central importance: its behavior governs the transition from
thermal to field emission as n goes from very small to very
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large. For all conditions of interest, the large u limit
suffices, and is dropped from further consideration. The
integral in Eq. [2] can be separated into regions such that
series expansions of the components of the integrand can
be integrated term-by-term exactly. Collecting terms in the
resulting series expansions gives rise to the leading order
approximations to N(n,s) of

n?e™s z(1/n) (n>1)
N(n,s)~ (ne's—e_m)(n—l) (n=1)

e 3 (n) (n<1) DBl
( 40
Y(x)= L1+?x2 +—73%x4J

The regions n < 1 and n > 1 shall be referred to as the
“thermal” and “field” regimes, respectively. Eq. [2] using
Eq. [3] constitutes the Generalized Thermal-Field model.
The “revised” FN and RLD equations become

Jry = Aprp (kpBr )—2 exp(Br(u—E))Z{Br ! Br} 4]
Jrep = Apep (kg Br )_2 exp(Br(u—E,))Z{fr ! Br}

where the inherent symmetry between the two limits is
manifest and the argument of Z deserves particular notice.
Note, however, that when » is approximately unity, Eq. [4]
is no longer adequate and the n = 1 approximation must be
used. The remaining tasks are to determine E, and .

For a potential barrier described by V(x), the WKB

approximation to the “area under the curve” @is given by

2\) 2m J-x+
h x_

6(E)= (7(x)-E)"? ax [5]

where the limits of the integral are at the zeros of the
integrand and V(x) > E otherwise. If we define E,, to be the
location of the integrand maximum in Eq. [1], then
expressions for E, and fr are given by

Br=-050(E=Ey ) E,=Ey+(0(En) Br) 6]




For E > V{x), a linear extension of &E) is taken: from the
parabolic potential WKB approximation we find

1 2 1/2
9(E)=57r(h—2] O F3 % (v g-E)  [7]

where O = 0.36 eV-nm and ¢ = ® — \/4QF . In searching

for the integral maximum, £, is an elusive quarry that is
best hunted for numerically. For thermal emission
conditions, it is found near the barrier maximum, whereas
for field emission conditions, it is found near the chemical
potential. For Cu-like parameters (#=7.0 eV, ®=4.6 eV,
T'= 800K), its behavior is shown in Figure [1].
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Figure 1 Location of current integrand maximum for
copper parameters at 800 Kelvin.
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Figure 2 Behavior of the parameter n as a function of
field for copper parameters and T = 800 K.

Moreover, it has been found that the parameter » satisfies a
power-law relation with respect to F at fixed 7. Using the

98

parameters of Figure [1], Figure [2] shows the behavior of
n o« F. The value of the power p is obtainable through
simple models, which shall be taken up separately.
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Figure 3 Comparison of Eqs. [3] & [4] to commonly
used forms of the FN and RLD equations for copper
parameters but for a low ® of 2.4 eV and T = 1000 K.

The performance of the Generalized Thermal-Field
equation (GTFE) is shown in comparison to standard
implementations of the Fowler Nordheim and Richardson
equations but for “challenging” parameters: low work
functions at moderate temperatures. The GTFE results are
in agreement with numerical evaluation of Eq. [1]. Apart
from the expected disagreement in the n = 1 region, it is
also seen that standard FN result fails at high fields for low
work functions, and that standard RLD overestimates at
low fields because of the impact of E,,’s shifting location.

In summary, a generalized Thermal-Field emission
equation has been derived based on a linear-&(E)
approximation for the potential evaluated at the maximum
of the current integrand. The transition from “thermal-like”
emission to “field-like” emission is demarcated by the
transition of n = B/f from <l to >1. from near the
barrier maximum to near the Fermi level. The method has
general utility for potentials. Revised FN and RLD
approximations were given and shown to give good
agreement with the exact method.

Acknowledgements: KLJ gratefully acknowledges the
Joint Technology Office and the Office of Naval Research
for supporting this work, D. Feldman and P. G. O’Shea for

discussions.



